60 research outputs found

    Precision drug repurposing via convergent eQTL-based molecules and pathway targeting independent disease-associated polymorphisms

    Get PDF
    Repurposing existing drugs for new therapeutic indications can improve success rates and streamline development. Use of large-scale biomedical data repositories, including eQTL regulatory relationships and genome-wide disease risk associations, offers opportunities to propose novel indications for drugs targeting common or convergent molecular candidates associated to two or more diseases. This proposed novel computational approach scales across 262 complex diseases, building a multi-partite hierarchical network integrating (i) GWAS-derived SNP-to-disease associations, (ii) eQTL-derived SNP-to-eGene associations incorporating both cis-and trans-relationships from 19 tissues, (iii) protein target-to-drug, and (iv) drug-to-disease indications with (iv) Gene Ontology-based information theoretic semantic (ITS) similarity calculated between protein target functions. Our hypothesis is that if two diseases are associated to a common or functionally similar eGene -and a drug targeting that eGene/protein in one disease exists - the second disease becomes a potential repurposing indication. To explore this, all possible pairs of independently segregating GWAS-derived SNPs were generated, and a statistical network of similarity within each SNP-SNP pair was calculated according to scale-free overrepresentation of convergent biological processes activity in regulated eGenes (ITSeGENE-eGENE) and scale-free overrepresentation of common eGene targets between the two SNPs (ITSSNP-SNP). Significance of ITSSNP-SNP was conservatively estimated using empirical scale-free permutation resampling keeping the node-degree constant for each molecule in each permutation. We identified 26 new drug repurposing indication candidates spanning 89 GWAS diseases, including a potential repurposing of the calcium-channel blocker Verapamil from coronary disease to gout. Predictions from our approach are compared to known drug indications using DrugBank as a gold standard (odds ratio=13.1, p-value=2.49x10(-8)). Because of specific disease-SNPs associations to candidate drug targets, the proposed method provides evidence for future precision drug repositioning to a patient's specific polymorphisms.University of Arizona Health Sciences CB2; BIO5 Institute; UA Cancer Center; NIH [U01AI122275]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Workshop during the Pacific Symposium of Biocomputing, Jan 3-7, 2019: Reading between the genes: interpreting non-coding DNA in high-throughput

    Get PDF
    Identifying functional elements and predicting mechanistic insight from non-coding DNA and non-coding variation remains a challenge. Advances in genome-scale, high-throughput technology, however, have brought these answers closer within reach than ever, though there is still a need for new computational approaches to analysis and integration. This workshop aims to explore these resources and new computational methods applied to regulatory elements, chromatin interactions, non-protein-coding genes, and other non-coding DNA.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    C5 deficiency and C5a or C5aR blockade protects against cerebral malaria

    Get PDF
    Experimental infection of mice with Plasmodium berghei ANKA (PbA) provides a powerful model to define genetic determinants that regulate the development of cerebral malaria (CM). Based on the hypothesis that excessive activation of the complement system may confer susceptibility to CM, we investigated the role of C5/C5a in the development of CM. We show a spectrum of susceptibility to PbA in a panel of inbred mice; all CM-susceptible mice examined were found to be C5 sufficient, whereas all C5-deficient strains were resistant to CM. Transfer of the C5-defective allele from an A/J (CM resistant) onto a C57BL/6 (CM-susceptible) genetic background in a congenic strain conferred increased resistance to CM; conversely, transfer of the C5-sufficient allele from the C57BL/6 onto the A/J background recapitulated the CM-susceptible phenotype. The role of C5 was further explored in B10.D2 mice, which are identical for all loci other than C5. C5-deficient B10.D2 mice were protected from CM, whereas C5-sufficient B10.D2 mice were susceptible. Antibody blockade of C5a or C5a receptor (C5aR) rescued susceptible mice from CM. In vitro studies showed that C5a-potentiated cytokine secretion induced by the malaria product P. falciparum glycosylphosphatidylinositol and C5aR blockade abrogated these amplified responses. These data provide evidence implicating C5/C5a in the pathogenesis of CM

    Analysis of protein-coding genetic variation in 60,706 humans

    Get PDF
    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. We describe the aggregation and analysis of high-quality exome (protein-coding region) sequence data for 60,706 individuals of diverse ethnicities generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of truncating variants with 72% having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human “knockout” variants in protein-coding genes
    • …
    corecore